Skip to main content

Photography Fundamentals: Image Exposure, Shutter Speed and Aperture.

A beginners explanation of the key elements of a camera; how the relationship between shutter speed and aperture size determine exposure, and the relationship between stops and exposure value (EV).

For pretty much any photographic image, there are two features it must have. Firstly it must be in focus, at least somewhere in the image, and secondly, it must be correctly exposed.  Okay, okay, I know there are lots of ‘arty’ images out there that don’t conform to either, but for most of us in the real world, those are the rules.  I’m going to leave focus aside for the moment and concentrate on exposure: what we mean by this, how we achieve it, how we control it and modify it.  Now of course, if you leave your camera on auto, it will do a pretty decent job for you.  But that’s not very satisfying, and it’s not very creative.  It’s a bit like buying a painting; it may look great on you wall but it doesn’t make you feel like a painter.  So if we want to be photographers, not just a ‘guy (or girl) with a camera’ pressing the shutter button, then we need to have some understanding of what is actually going on inside the camera in order to take the ‘autopilot’ off, and take control ourselves.  The second consideration is, if you want to produce a standard image with textbook ‘correct’ exposure then leave it on auto and your camera will do that for you, at least most of the time. However, if you want to create something more interesting, more individual, then you need more control over how the camera captures the image, and that requires you to take the wheel yourself.

One of the biggest problems nowadays, for people new to photography, is that cameras are so damn sophisticated.  There are so many controls, settings, menus and sub-menus that it can feel like learning to drive in a fighter jet.  Just where do you start to take control?  in order to help understanding, let’s pare back our camera to its simplest form.  Every camera, whether it is the latest top-of-the-range, full-frame, mirrorless, or an 1839 Daguerreotype, is fundamentally a light-tight box with a hole (the aperture) on one side to allow some light in, and some light sensitive material on the opposite side, and a means of blocking the from light reaching the light sensitive material (the shutter) .

The light-path between the aperture and the light sensitive material is periodically unblocked (the shutter opened) allowing light to reach reach the light sensitive material. This material is then altered in some way by the light, and this begins the process of creating an image. What exactly that material is, has changed many times.  The 19th century Daguerreotype used copper plate coated with silver; early 20th century cameras mostly used glass plates coated with silver salts; then of course film took over; and now we have solid-state sensors that convert light in to electrical signals, but the the basic design is exactly the same.

So we talk about ‘exposing’ the plate, or film, or sensor, to light in order to create an image.  I’ll stick with sensors from this point, as that is what we use now. The amount of light hitting the sensor determines the lightness of the image.  The more light hitting the sensor, the lighter the images, the less light, the darker the image.  We talk about images being correctly, under- or overexposed.  By underexposed we mean that the mid-tones are too dark and we start to lose detail in the shadows.

Underexposed image of a tokay gecko on a wall

By overexposed the mid-tones are too bright and we start to lose detail in the highlights.

Overexposed image of a tokay gecko on wall

So we control the degree of exposure primarily by controlling the amount of light hitting the sensor, and we do this in two ways.  We can vary the length of time that the sensor is exposed to light (i.e. the duration the shutter is open) and we can vary the size of the aperture allowing light to reach the sensor.  So let’s look at those mechanisms in turn.

Shutter speed

The shutter is a pair of metal curtains, located in front of the sensor.  They act to block light passing through the aperture from reaching the sensor, except for the period the shutter is opened.  This is the same mechanism used in film cameras. However, today most mirrorless cameras, and some DSLRs, have an electronic shutter, where the sensor is switched on and off to produce a similar effect.

The duration the shutter is open is known as the shutter speed.  There are a range standard shutter speeds we see on most modern cameras, e.g. 1 second, 1/2 second, 1/4 second, 1/8 second, 1/15 second, 1/30 second, 1/60 second, 125 second, 1/250 second, and so on.  You will notice that each is (with minor exceptions) half the duration of the previous one.  Half a second allows in half as much light as a one second shutter speed; 1/125 allows in twice as much light as 1/250 of second. So changing from one ‘standard’ shutter speed to the next nearest either halves or doubles the amount of light hitting the sensor, depending on the direction of change.  Having or doubling the amount of light reaching the sensor is known as changing it by one stop.  Understanding the concept of stops (and exposure equivalent values, which I will explain further on) is fundamental to photography.

Aperture size

We also have a second means of regulating the amount of light reaching the sensor; we can change this by changing the size of the aperture. If we make the aperture twice as large, then twice as much light will hit the sensor (if the shutter is open for the same duration) if we make it half as large it will allow half as much light to reach the sensor.  This is preety self evident, I’m sure.  And this modifying the aperture by halving or doubling is known as changing it by …. one stop. Whilst the shutter speed values are pretty intuitive, aperture values are not.  They are known as f stops, and commonly values range between f2.8 and f22 (sometimes f1.4 – f32).  These f stops also change in standard increments, but at first glance they are quite meaningless: f2.8, f4, f5.6, f8, f11, f16, f22.  Even more puzzling, the largest number denotes the smallest aperture.  The simplified answer for this is that the f value is not a physical measure of the diameter of the aperture, it is a ratio between the focal length of the lens and the aperture: f value = focal length/aperture diameter.  From a practical stance, none of this theory matters to the photographer.  What does matter is knowing that each f stop allows in half or twice as much light the next full stop to the left or right, and that the smaller the number, the greater the aperture diameter, the greater the amount of light reaching the sensor.  Most modern cameras work on a click-stop principle.

A modern lens showing the aperture wide open

A lens showing the aperture stopped down to smallest size

So that the size of the aperture, rather than smoothly variable from smallest to largest, changes in a series of steps.  So when we change aperture on our camera, either by rotating a ring on the lens or, more commonly nowadays, a dial on the camera body, we feel a series or positive clicks.  These steps correspond to the f stop values listed above, plus (on modern cameras) 1/3 of a stop intervals.  So, for example, on our camera we might find f values of F2.8, f3.2, f3.5, F4, f4.5, f5, f5.6. The figures in bold are full stops, the figures in lighter text are 1/3 and 2/3s of a stop up or down.  The beautiful symmetry of the stop system is this.  Say for example, our image is correctly exposed at a combination of shutter speed 1/250th and aperture size f8.  If nothing else changes, then we know that if we change the aperture to f11 (one stop smaller) then the image will be underexposed by one stop. Equally, if we change the shutter speed to 1/500th, the image will be underexposed by one stop.  If we change the shutter speed to 1/500, and simultaneously change the aperture to f5.6, then the exposure stays exactly the same, because the former acts to half the amount of light reaching the sensor, and the latter acts to double the amount of light, thus the combined effect is that the total amount of light reaching the sensor is exactly the same.  The obvious questions are: why have two separate mechanisms to achieve the same control over the amount of light, and why would one alter two controls in order to produce exactly the same exposure.  There are several considerations here, and to detail them all would distract from the main purpose of this blog, so I’ll most of those for a future blog.  However, a key consideration is motion blur. If we have an aperture of fixed size, we can still achieve correct exposure by changing the shutter duration; this is in fact, exactly how a pinhole camera works.  The problem comes with photographing moving objects. The faster a subject is moving, the faster the shutter speed needs to be in order to freeze the motion and stop the subject appearing blurred.  This explains how, in some pinhole camera photographs, streets can appear empty of people or vehicles. because the aperture is so tiny, the shutter speeds often need to be very long (many seconds).  Fast moving objects move across the aperture too fast to register on the image. But even modern DSLRs, if we set the shutter speed too slow, then a fast moving object (e.g. a bird in flight or a sports player) becomes blurred in the image produced.

Exposure Values

The final concept I want to talk about here is Exposure Value (EV or sometimes Ev). As explained above, different combinations of shutter speeds and aperture sizes will still produce the same image exposure. Exposure values assign one value to all the combinations that produce the same exposure.  In practical terms, exposure values are mostly interchangeable with stops.  Underexposing an image by one EV is the same as underexposing by one stop.  We tend to refer to stops when taking about shutter speed of aperture.  When we want to vary exposure in automatic or semi-automatic modes (not something I’m covering here) then we start to refer to EV and vary it using the Exposure Compensation button; but that’s all for another blog.

What I’ve missed out

In order to keep things fairly simple, I haven’t talked at all about the third factor in what is often called the exposure triangle, namely ISO.  That will be the subject of another blog soon.

Photography in the digital age: what’s changed?

An old lady weaving pandanus leaves laughs as she works. Suau Island, Milne Bay Province, Papua New Guinea. Colin Munro Photography © Colin Munro
A school of Convict Surgeonfish graze a reef promontory, Nuie Island, South Pacific. © Colin Munro Colin Munro Photography

A school of Convict Surgeonfish graze a reef promontory, Nuie Island, South Pacific. Photographing light coloured fish against blue water is one of many situations where you don’t want to use auto settings. Image taken with a Nikon D610 and Nikon 20mm in an Aquatica housing, while free-diving around Nuie Island, October, 2019.

When I was young, both the World and photography was much simpler. The changes that have occurred in the World would take more than a blog to describe, so I’ll stick to those that directly affect photography. Back in the 1980s photography was film, and cameras were electro-mechanical machines – and so fairly simple to understand how they worked.  In fact, I started out in underwater photography before ever seriously using a camera on land, and the camera I started with (a second-hand, mid-1970s vintage Nikonos III) was entirely mechanical, to all intents and purposes a slightly tweaked version of the Calypso-phot designed by the Belgian engineer Jean de Wouters for Jacques Cousteau’s La Spirotechnique  company.  Incredibly simple by modern standards, my Nikonos III had the great advantage that if the camera flooded during a dive, one simply took it apart – a very easy process – washed it with fresh water, left it to dry, and put it back together.  Good luck doing that with any modern camera!  A second advantage of my mechanical Nikonos was that taking pictures underwater wasn’t that easy, especially so in the dark, turbid waters of the Firth of Clyde where I was based at that time. That may be counter-intuitive, but if you actually wanted to make money from taking photographs, then you definitely did not want it to be something that could be done with little or no skill or training.  There was no light meter, so you had to base settings on experience.  Flash lighting ( a necessity in such waters) was manual only, so you needed to know the power of the flash, estimate the total light path distance and set your camera aperture accordingly.  Add to this that a film roll contained only 36 frames, and of course film could not be changed underwater.  Once the 36 frames were used up, that was it. Dive over.  The end result of this was that there were far fewer underwater images around in the early 1980s, and a pretty low percentage of these were actually useable.  Nowadays there are estimated to be around 6 Million active SCUBA divers Worldwide (Diving Equipment and Marketing Association, 2019) and a fair percentage of those are taking underwater photographs.

Many of the changes in underwater photography over the past few decades have been replicated on land. Cameras have changed from being (relatively) simple devices for creating images on film, to hugely sophisticated instruments that convert light to electrical charge and so create and store digital images.  A modern digital SLR will produce images that are sharper and contain far more detail than the best 35mm film images of just a few years ago. They are also created at a far greater rate.    A total of somewhere around 25 thousand million photographs were taken in 1980, a vast number that is true, but compare that with 2017. Around 1.2 Trillion photographs were uploaded in 2017.  Gizmodo estimates that 300 million photographs were uploaded on to Facebook alone in 2019.  This creates two immediate problems for any serious photographer. Firstly, almost all of the millions upon millions of images that are online can be viewed freely, so why should someone pay for your images?  Secondly, even if they want to pay for your images, how on earth do you get people to find them within this staggery vast array of pictures?  These are the key problems facing pretty much all photographers trying to sell images nowadays.

The problems do not end there. Most images are licensed through stock agencies to print companies, newspapers or magazines (e.g. a licence is granted to use the image for a limited period of time or set publication or print run).  Back in the 1980s this could generate a serious income.  But now, not only are there many, many more images to choose from, but the newspapers and magazines no longer make the same profit from advertising as they too have lost out to the online world.  Almost all newspapers nowadays lose money, so they are looking for the cheapest images possible much of the time.  It is not possible to come out with a scientifically robust figure, but from personal experience and talking to lots of friends and colleagues, I estimate that – for similar levels of effort – the income generated from stock image sales is between a 1/10th to 1/20th of 1980s levels.   That does not mean you cannot make money selling images through stock agencies (or directly) but it does mean you will need to work hard at it and are unlikely to make your fortune doing so.

A black and white edit of beach and skyline, One-foot-Island, Aitutaki, Cook Islands, Polynesia. Colin Munro Photography © Colin Munro

A black and white edit of beach and skyline, One-foot-Island, Aitutaki, Cook Islands, Polynesia. Monochrome for landscape is very much a personal preference. Generally it works better with high contrast images.  Nikon D610, Nikon 20mm, polarising filter. Aitutaki, October 2019.

One of the great things about modern DSLRs and mirrorless digital cameras is that they are incredibly powerful image-creating machines, with a huge array of setting controls, functions, custom-settings, menus and sub-menus that allow the photographer enormous control over the appearance of the final image.  But the awful thing about modern DSLRs and mirrorless is that they are incredibly powerful image-creating machines, with a huge array of settings and controls ……  so you get the idea.  Picking up a modern DSLR or mirrorless for the first time can be a very daunting experience.  Our cameras have never been better equipped to capture images that are incredibly faithful to real life or to create stunning artistic images, and yet the overwhelming majority are rarely used other than on auto mode. Fortunately, many people are motivated to get to grips with more of the full potential of the high tech piece of very expensive hardware they have paid good money for.  As a consequence many professionals, myself included at times, have made the shift across from solely taking photographs to teaching photography.

An old lady weaving pandanus leaves laughs as she works. Suau Island, Milne Bay Province, Papua New Guinea. Colin Munro Photography © Colin Munro

An old lady weaving pandanus leaves laughs as she works. Suau Island, Milne Bay Province, Papua New Guinea. I prefer longer lenses for people shots.  It makes obtaining a shallow depth of field so much easier, but just as important, it provides some distance, so the subject is more likely to be behaving naturally rather than posing for the camera. Nikon D610 and Nikon 80-400mm 4.5-5.6D lens.

Teaching photography can be a rewarding process.  For one thing their is nothing like teaching any subject to make sure you really understand it yourself. Secondly, this is far from a static field.  The techniques I teach now have changed radically from those I taught  ten years ago, because cameras themselves have changed radically in that time.    Photography is a constant learning and re-learning process.  When digital photography began to supplant film based photography I deeply resented it.  Digital was precise, more automated; photochemical changes in silver halide crystals were not precise.  Film was ….. well, magic.   But the more I learned as a (initially) reluctant convert to digital, the more I appreciated that many of the skills I had learned in the previous 25 years were not redundant but actually quite transferrable and highly useful still in the digital era.  More than that, the limitations of my early mechanical cameras and the photographically challenging environment of the dark waters of Southwest Scotland meant that I was forced to really learn the basic principles of photography and how light behaved.  These basic principles still underpin photography using todays latest digital camera systems.

An Australian Flatback Turtle, Natator depressus, hauls itself up a deserted beach, Adele Island, Kimberley Coast, Northern Australia. © Colin Munro www.colinmunrophotography.com

An Australian Flatback Turtle, Natator depressus, hauls itself up a deserted beach, Adele Island, Kimberley Coast, Northern Australia. A wide-open lens helps isolate the subject from the background. A long lens allows nice tight shots without encroaching close on the subject and possibly disturbing her.  The arrival of a fallback on the beach was completely unexpected, but her slow progress across the sand to above the high water mark where her eggs would be laid allowed plenty of time for multiple shots to be taken.  I like this one because of the eye contact.  Nikon D610, Nikon 80-400 4-5.6D lens.

 

Despite all the advances, photography still remains the manipulation of light in order to obtain a sharp (mostly) and correctly exposed image on light sensitive media. The control we have in order to achieve that has expanded almost out of all recognition, but the fundamental variables: shutter duration, aperture size, ISO, lens properties and sensor dimensions are still fundamentally unchanged since the days of George Eastman’s Box Brownie developed 120 years ago.

Shutter speed control on digital cameras, what exactly does it do?

The LCD Display on a Digital SLR camera showing the shutter speed (here set to 1/30th of a second). This diplay may be on the top or back of the camera, depending on model. Colin Munro Photography

About a week ago I put up an article looking at looking at what the ISO control on a camera does, so it seems logical to cover the other camera controls that determine image exposure. So logically the place to start is with the first, most basic control, the shutter.  The shutter is basically light-proof barrier placed between the camera’s sensor (or film frame, if you’re old school) and the aperture through which light passes in to the camera.  But, and this is the key aspect, it is a barrier that can be opened for precise durations of time.  Now image exposure is determined by the amount of light hitting the sensor: too much light and the image is overexposed, too little and the image is underexposed, the correct amount and the image is just right (think of Goldilocks and the three bears).  So one way we can control the amount of light hitting the camera’s sensor is by controlling how long the shutter is open and light is allowed to pass through and reach the sensor, rather like controlling the flow of water in to a glass with a tap.

So what does a shutter look like?  various designs have been used over the years with different camera types and as cameras have evolved.  Digital SLR cameras (and film SLRs for that matter) use what is known as a focal plane shutter, that is a shutter placed directly in front of the flat area where the camera sensor (or film) is located.  These consist of a series of overlapping blades that lift and fall as the shutter opens and closes.  Compact, point and shoot, cameras generally do not have a mechanical shutter (as the focal plane shutter is) rather they have an electronic shutter.  Electronic shutters are an integral part of the camera sensor and primarily work by ‘turning off’  reading of the light hitting the sensor.

Focal plane shutter in a film SLR, showing mechanism.  Shutter CLOSED

Focal plane shutter in a film SLR, showing mechanism. Shutter CLOSED

Focal Plane shutter mechanism in a film SLR. Shutter OPEN.

Focal Plane shutter mechanism in a film SLR. Shutter OPEN.

Shutter speed. When we talk about shutter speed that we are actually referring to is the duration the shutter is open and the sensor exposed to light.  In most general photography these durations are only fractions of a second and, despite the spread of decimalisation, we still tend to use common fraction rather than decimal fraction notation (e.g. 1/2, 1/4, 1/8, 1/15th of a second).   Setting the shutter speed on a camera serves two purposes: firstly it determines how much light hits the sensor, and secondly it freezes or blurs movement across the image.

Shutter speed control on a film SLR, showing standard shutter duration increments. Colin Munro Photography

Shutter speed control on a film SLR, showing standard shutter duration increments.

The LCD Display on a Digital SLR camera showing the shutter speed (here set to 1/30th of a second).  This diplay may be on the top or back of the camera, depending on model. Colin Munro Photography

The LCD Display on a Digital SLR camera showing the shutter speed (here set to 1/30th of a second). This diplay may be on the top or back of the camera, depending on model.

Motion blur. Not everything we photograph remains perfectly still. So, the duration the shutter is open will also influence how sharp a moving object is, or whether it is blurred due to it moving across the field of view whilst the shutter is open.  This can be a person, an animal, cars, flowing water etcetera.   Mostly we want our images nice and sharp, with objects frozen in time, but sometimes we will deliberately allow (our induce) motion blur for artistic reasons or to give the impression of movement.  A further consideration here is that motion blur comes not just from objects in front of the camera moving.  If we hand-hold a camera (as opposed to mounting on a tripod) there will always be a slight amount of ‘hand shake’.  At faster shutter speeds this is not noticeably in the captured image but with very slow shutter speeds the camera will wobble slightly in our hands whilst the shutter is open. This results in everything in the image being slightly burred.  A general rule of thumb is to shoot at 1/60th or faster when hand holding your camera, for non-moving objects when using a standard lens (i.e. not a telephoto lens).  When shooting using a telephoto lens, or shooting fast moving objects (maybe motor sports) you will need a significantly faster shutter speed to freeze motion, maybe 1/250th of a second or possibly up to 1/1000th of a second depending on factors such as the focal length of the lens, the speed the subject is moving at and how close you are to the moving subject.

Find me on Google+ Colin Munro

Like my page on Facebook
My main website Colin Munro Photography
Follow me on twitter @colinmunrophoto

ISO setting on digital cameras, what exactly does it do?

ISO setting on digital cameras, what exactly does it do?

This is part of an occasional series looking at the basic controls on a camera. It’s here primarily to supplement, and as a taster for, my beginners photography classes and one-to-one sessions. Some of the controls on a camera are fairly intuitive. Zoom, for example, controls the focal length of the lens and so the degree of magnification of the image (we zoom in, or we zoom out). Shutter speed controls the…er…speed of the shutter; well accurately it controls the duration the shutter is open, and so the amount of light allowed to pass through the shutter and impinge on the sensor, which in turn directly influences how bright or dark the image is. But ISO? Knowling that the acronym stands for International Organisation for Standardation doesn’t help that much either, and yes, I know it should be IOS not ISO (there are reasons but truthfully that would simply be too much of a digression to go there now, ask me after class :)). So if we simply accept that the name, ISO, tells us nothing about what the control actually does – then what does the ISO control on a camera do? Essentially the ISO setting works rather like the amplifier on a radio or CD player; it varies the signal gain to produce a brighter (for higher iSO values) or darker (for lower ISO values) without any changes in the amount of light hitting the sensor. Typically ISO values range from 100 (low) to 3,200 or 6,400 (high) on some cameras. These numbers are derived from film; with film cameras the film had a set sensitivity to light. Film that responeded quickly was termed fast film; film that responded slowly …. you’ve guessed already ..slow film. The film’s sensitivity could not be changed, so once it was loaded into the camera the ISO value of that film was then dialled in using the camera ISO control, allowing the film’s sensitivity to be taken in to account when exposure was evaluated by the camera’s light meter (or it would be dialled in to the meter if a hand held light meter was used). The ISO sensitivity in a digital camera is created very differently to in a film camera, but the same numerical values are used and they approximate closely to the changes in sensitivity to light that occurred in film. Essentially, the steps between each ‘standard’ ISO value represents a doubling or a halving in senstivity, depending on whether one goes up or down. So ISO 200 is twice as sensitive as ISO 100; ISO 400 is twice as senstive as ISO 200, and so on. What does this mean in practical terms? Well, if a particular scene was correctly exposed at a shutter speed of 15th of a second at ISO 100, then (all other settings remaining unchanged) the same scene would still be correctly exposed at 30th of a second at ISO 200 (a shorter time the sensor is exposed to light, but a more sensitive ISO value) it would also be correctly exposed at 60th of a second at ISO 400. Okay, so what would the correct ISO setting be if the shutter speed was changed to 500th of a second?
Hopefully this explains how the ISO values influence image exposure, but why do we want this control? Well there are a few situations where it is useful but the fundamental one is that a higher ISO allows us to use faster shutter speeds. If we go back to my first example, a shutter speed of 15th of a second at ISO 100. A 15th of a second is very slow and likely to produce a blurred image, a) due to the slight shakiness in everyone’s hands and b) as people (or animals, cars etc.) move. By selecting a higher ISO value we can then change to a faster shutter speed where these problems will be greatly reduced (for the sake of simplicity I have not considered aperture values and have assumed they remain unchanged).

 

Find me on Google+ Colin Munro
Like my page on Facebook
My main website Colin Munro Photography
Follow me on twitter @colinmunrophoto